76 research outputs found

    Quantum tomography of mesoscopic superpositions of radiation states

    Get PDF
    We show the feasibility of a tomographic reconstruction of Schr\"{o}dinger cat states generated according to the scheme proposed by S. Song, C.M. Caves and B. Yurke [Phys. Rev. A 41, 5261 (1990)]. We present a technique that tolerates realistic values for quantum efficiency at photodetectors. The measurement can be achieved by a standard experimental setup.Comment: Submitted to Phys. Rev. Lett.; 4 pages including 6 ps figure

    Parameters estimation in quantum optics

    Get PDF
    We address several estimation problems in quantum optics by means of the maximum-likelihood principle. We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamiltonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applications, the Gaussian bound on statistical errors is attained with a few thousand data.Comment: 11 pages. 6 figures. Accepted on Phys. Rev.

    Optimal estimation of multiple phases

    Full text link
    We study the issue of simultaneous estimation of several phase shifts induced by commuting operators on a quantum state. We derive the optimal positive operator-valued measure corresponding to the multiple-phase estimation. In particular, we discuss the explicit case of the optimal detection of double phase for a system of identical qutrits and generalise these results to optimal multiple phase detection for d-dimensional quantum states.Comment: 6 page

    Quantum state engineering assisted by entanglement

    Full text link
    We suggest a general scheme for quantum state engineering based on conditional measurements carried out on entangled twin-beam of radiation. Realistic detection schemes such as {\sc on/off} photodetection, homodyne detection and joint measurement of two-mode quadratures are analyzed in details. Imperfections of the apparatuses, such as nonunit quantum efficiency and finite resolution, are taken into account. We show that conditional {\sc on/off} photodetection provides a reliable scheme to verify nonclassicality, whereas conditional homodyning represents a tunable and robust source of squeezed light. We also describe optical teleportation as a conditional measurement, and evaluate the degrading effects of finite amount of entanglement, decoherence due to losses, and nonunit quantum efficiency.Comment: Some pics with low resolution. Originals at http://www.qubit.i

    Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single qubit device

    Full text link
    We present the first full experimental quantum tomographic characterization of a single-qubit device achieved with a single entangled input state. The entangled input state plays the role of all possible input states in quantum parallel on the tested device. The method can be trivially extended to any n-qubits device by just replicating the whole experimental setup n times.Comment: 4 pages in revtex4 with 4 eps figure

    Local observables for entanglement witnesses

    Full text link
    We present an explicit construction of entanglement witnesses for depolarized states in arbitrary finite dimension. For infinite dimension we generalize the construction to twin-beams perturbed by Gaussian noises in the phase and in the amplitude of the field. We show that entanglement detection for all these families of states requires only three local measurements. The explicit form of the corresponding set of local observables (quorom) needed for entanglement witness is derived.Comment: minor corrections, title change

    Improving quantum interferometry by using entanglement (to take a decision you'd better use entanglement)

    Full text link
    We address the use of entanglement to improve the precision of generalized quantum interferometry, i.e. of binary measurements aimed to determine whether or not a perturbation has been applied by a given device. For the most relevant operations in quantum optics, we evaluate the optimal detection strategy and the ultimate bounds to the minimum detectable perturbation. Our results indicate that entanglement-assisted strategies improve the discrimination in comparison with conventional schemes. A concrete setup to approach performances of the optimal strategies is also suggested.Comment: 2 fig

    Protocols for entanglement transformations of bipartite pure states

    Get PDF
    We present a general theoretical framework for both deterministic and probabilistic entanglement transformations of bipartite pure states achieved via local operations and classical communication. This framework unifies and greatly simplifies previous works. A necessary condition for ``pure contraction'' transformations is given. Finally, constructive protocols to achieve both probabilistic and deterministic entanglement transformations are presented.Comment: 7 pages, no figures. Version slightly modified on Physical Review A reques

    Unambiguous quantum state filtering

    Full text link
    In this paper, we consider the generalized measurement where one particular quantum signal is unambiguously extracted from a set of non-commutative quantum signals and the other signals are filtered out. Simple expressions for the maximum detection probability and its POVM are derived. We applyl such unambiguous quantum state filtering to evaluation of the sensing of decoherence channels. The bounds of the precision limit for a given quantum state of probes and possible device implementations are discussed.Comment: 7 pages, 5 figure

    Quantum State Reconstruction of Many Body System Based on Complete Set of Quantum Correlations Reduced by Symmetry

    Full text link
    We propose and study a universal approach for the reconstruction of quantum states of many body systems from symmetry analysis. The concept of minimal complete set of quantum correlation functions (MCSQCF) is introduced to describe the state reconstruction. As an experimentally feasible physical object, the MCSQCF is mathematically defined through the minimal complete subspace of observables determined by the symmetry of quantum states under consideration. An example with broken symmetry is analyzed in detail to illustrate the idea.Comment: 10 pages, n figures, Revte
    • …
    corecore